
Btrees - 1

Multiway searching

What do we do if the volume of data to be 
searched is too large to fit into main memory

Search tree is stored on disk pages, and the 
pages required as comparisons proceed may not 
be in main memory.
– in such disk resident search trees, the tree contains the disk 

addresses of the page containing the data at its sons

– can have many page faults which can slow search dramatically

In the worst case of searching a complete binary 
search tree, we can make log(n) page faults

Everyone knows what a page fault is?
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Multiway trees

In binary search tree we test one key value 
and make a 2 way branch

Instead, we can test m key values and 
make an (m+1) way branch.

–Algorithmically, a simple generalization of 2-3 
trees

Also need to keep the tree balanced to 
have good worst case search behavior
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Multiway trees

A B+-tree of order m is defined as follows:
–All leaf nodes appear at the same level and contain 

single key values and pointers to associated records.

–Unless the root is a leaf node, it has at least 2 sons

– All nodes other than the root and the leaf nodes have 
at least roof[m/2] sons (and so contain at least 
roof[m/2] -1 keys)

– A node has a maximum of m sons (and m-1 keys)

– A nonleaf node with j key values has j+1 sons
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Example B-tree of order 5
General form of a node is p0 k0 p1 k1 ....ktpt+1

p0 points to a node in which all keys are less than or equal to 
k0

p1 points to a node in which all keys are >  k0 but <=  k1

pt+1 points to a node in which all keys are greater than kt, the 
last key 25

10    20

2  5  7   8 13 14 15 18 22     24

30    40

26  27  28 32  35  36
41 42 45 46
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Searching in B trees

• Search descends from the root as in a BST.

• Within a node, we can search for the appropriate 
branch of the key using any search method
– if we are not at a leaf node, then search is directed to one of the 

sons

– if we reach a leaf node that contains the search key, then the search 
is successful

Typically, we do not store the database keys in the 
internal nodes, just separator keys that separate the 
database keys in the subtrees.
– Otherwise, we would have to store pointers to data records in internal 

nodes

– This would, generally, lead to fewer keys per node, and more disk 
accesses to locate a database key
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Searching in B-trees

25

10    20

2  5  7   8 13 14 15 18 22     24

30    40

26  27  28 32  35  36 41 42 45 46

Search for 14

2 5 7 8 10
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Insertion into B-trees

Search for record with key value k.  The 
search will fail but will take us to the node 
into which k should be inserted.

This will be a node at the bottom of the tree.

If the node is not full, we can make the 
insertion and exit.

If the node already contains m values, we 
have an overflow



Btrees - 8

Dealing with overflow
Split the node into two, dividing the keys as 
evenly as possible.

Construct a separator key value for the 
father, a, and insert it there.

Terminate when we encounter a node that 
does not need to be split or we get to the 
root.

–Note – when we split non leaf nodes we can 
promote a separator key

If we have to split the root, we create a new 
node with one key
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10    20

2  5  7   8 13 14 15 18 22     24

insert 16

8

10 15.5 20

2  5  7   8 22     2413 14 15 16 18
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Example of root splitting

10 20 30 40

1  2  3  4 11 12 13 14 21 22 23 25 31 32 33 34 41 42 43 44

Insert 24

a b c d e

R

10 20  23.5 30 40

a b d e

c1 c2

21   22 23 24   25
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Root splitting

10 20  23.5 30 40

a b d e

c1 c2

21   22  23 24   25

23.5

10 20 30 40

21   22 23 24   25a b d e

c1 c2

R1 R2

Newroot
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Deletion from B-trees

To delete record with key, k, conduct a search to 
find it in the B-tree. It will be at a leaf. 

If deletion does not cause underflow, done.

Otherwise, try to borrow a key from a sibling and 
fix the separator keys in the parent.

If no siblings have extra keys, then merge with a 
sibling and reduce the number of separators in the 
parent ,p, by 1. 

This may cause node p to underflow.  Two ways 
to deal with this - rotation and merging – just like in 
2-3 trees.
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Deletion

Suppose that node a underflows because of a deletion.

Let b be a brother of a that has at least roof(m/2) keys (i.e., it 
has keys to spare)

We can move a key from b to a and create a new separator in 
c.

10    20

2  5  7   8 13 14 15 18 22     24

10    17

2  5  7   8 13 14 15 18 24

delete 22

ab

c
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Borrowing not possible

10    20

2  5  7   8 15 18 22     24

10    17

2  5  7   8 15 18     24

delete 22

C C

Borrowing is not always possible, since a node may not have 
brothers with extra keys

Deleting 22 and borrowing from C causes C to underflow

Could try to borrow to C, but this can get complicated, and will 
not always work
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Merging

If rotation is not possible, then we merge a node with one 
of its siblings

–Note that each sibling must have roof (m/2) -1 keys -
the minimal number - or else we could have borrowed.

When we merge a node, a, with one of its siblings, b, we 
also have to remove a separator key from the father -
since the father will have one fewer son.

This may cause the father to underflow.  We then apply 
either rotation or merging to the father recursively, like 
regular 2-3 trees.

If the process terminates at the root, and the root 
contains only a single key that must be demoted, then the 
root itself is deleted and the process halts.
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Example of deletion from B(4)-tree

50 100

10 30 60 70 80 110 120

102 104 112 115 125 130

A

B C
D

E F G H I J K
L

M N

Delete 102 from L

50 100

10 30 60 70 80 120

104 112 115 125 130

A

B C D

E F G H I J K
L

N

D underflows
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50 80

10 30 60 70 100, 120

104 112 115 125 130

A

B C D

E F G H I J K L

N

50 100

10 30 60 70 80 120

104 112 115 125 130

A

B C D

E F G H I J K
L

N
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Summary of B-trees

B-trees are balanced

Storage utilization is at least 50% and is usually 
higher (i.e., nodes are more nearly full than half 
empty)

For a B-tree of height d, searching, insertion and 
deletion can be done in O(d) time

Number of disk writes and reads is at most 3d + 4 
for each operation


