
Btrees - 1

Multiway searching

What do we do if the volume of data to be
searched is too large to fit into main memory

Search tree is stored on disk pages, and the
pages required as comparisons proceed may not
be in main memory.
– in such disk resident search trees, the tree contains the disk

addresses of the page containing the data at its sons

– can have many page faults which can slow search dramatically

In the worst case of searching a complete binary
search tree, we can make log(n) page faults

Everyone knows what a page fault is?

Btrees - 2

Multiway trees

In binary search tree we test one key value
and make a 2 way branch

Instead, we can test m key values and
make an (m+1) way branch.

–Algorithmically, a simple generalization of 2-3
trees

Also need to keep the tree balanced to
have good worst case search behavior

Btrees - 3

Multiway trees

A B+-tree of order m is defined as follows:
–All leaf nodes appear at the same level and contain

single key values and pointers to associated records.

–Unless the root is a leaf node, it has at least 2 sons

– All nodes other than the root and the leaf nodes have
at least roof[m/2] sons (and so contain at least
roof[m/2] -1 keys)

– A node has a maximum of m sons (and m-1 keys)

– A nonleaf node with j key values has j+1 sons

Btrees - 4

Example B-tree of order 5
General form of a node is p0 k0 p1 k1ktpt+1

p0 points to a node in which all keys are less than or equal to
k0

p1 points to a node in which all keys are > k0 but <= k1

pt+1 points to a node in which all keys are greater than kt, the
last key 25

10 20

2 5 7 8 13 14 15 18 22 24

30 40

26 27 28 32 35 36
41 42 45 46

Btrees - 5

Searching in B trees

• Search descends from the root as in a BST.

• Within a node, we can search for the appropriate
branch of the key using any search method
– if we are not at a leaf node, then search is directed to one of the

sons

– if we reach a leaf node that contains the search key, then the search
is successful

Typically, we do not store the database keys in the
internal nodes, just separator keys that separate the
database keys in the subtrees.
– Otherwise, we would have to store pointers to data records in internal

nodes

– This would, generally, lead to fewer keys per node, and more disk
accesses to locate a database key

Btrees - 6

Searching in B-trees

25

10 20

2 5 7 8 13 14 15 18 22 24

30 40

26 27 28 32 35 36 41 42 45 46

Search for 14

2 5 7 8 10

Btrees - 7

Insertion into B-trees

Search for record with key value k. The
search will fail but will take us to the node
into which k should be inserted.

This will be a node at the bottom of the tree.

If the node is not full, we can make the
insertion and exit.

If the node already contains m values, we
have an overflow

Btrees - 8

Dealing with overflow
Split the node into two, dividing the keys as
evenly as possible.

Construct a separator key value for the
father, a, and insert it there.

Terminate when we encounter a node that
does not need to be split or we get to the
root.

–Note – when we split non leaf nodes we can
promote a separator key

If we have to split the root, we create a new
node with one key

Btrees - 9

10 20

2 5 7 8 13 14 15 18 22 24

insert 16

8

10 15.5 20

2 5 7 8 22 2413 14 15 16 18

Btrees - 10

Example of root splitting

10 20 30 40

1 2 3 4 11 12 13 14 21 22 23 25 31 32 33 34 41 42 43 44

Insert 24

a b c d e

R

10 20 23.5 30 40

a b d e

c1 c2

21 22 23 24 25

Btrees - 11

Root splitting

10 20 23.5 30 40

a b d e

c1 c2

21 22 23 24 25

23.5

10 20 30 40

21 22 23 24 25a b d e

c1 c2

R1 R2

Newroot

Btrees - 12

Deletion from B-trees

To delete record with key, k, conduct a search to
find it in the B-tree. It will be at a leaf.

If deletion does not cause underflow, done.

Otherwise, try to borrow a key from a sibling and
fix the separator keys in the parent.

If no siblings have extra keys, then merge with a
sibling and reduce the number of separators in the
parent ,p, by 1.

This may cause node p to underflow. Two ways
to deal with this - rotation and merging – just like in
2-3 trees.

Btrees - 13

Deletion

Suppose that node a underflows because of a deletion.

Let b be a brother of a that has at least roof(m/2) keys (i.e., it
has keys to spare)

We can move a key from b to a and create a new separator in
c.

10 20

2 5 7 8 13 14 15 18 22 24

10 17

2 5 7 8 13 14 15 18 24

delete 22

ab

c

Btrees - 14

Borrowing not possible

10 20

2 5 7 8 15 18 22 24

10 17

2 5 7 8 15 18 24

delete 22

C C

Borrowing is not always possible, since a node may not have
brothers with extra keys

Deleting 22 and borrowing from C causes C to underflow

Could try to borrow to C, but this can get complicated, and will
not always work

Btrees - 15

Merging

If rotation is not possible, then we merge a node with one
of its siblings

–Note that each sibling must have roof (m/2) -1 keys -
the minimal number - or else we could have borrowed.

When we merge a node, a, with one of its siblings, b, we
also have to remove a separator key from the father -
since the father will have one fewer son.

This may cause the father to underflow. We then apply
either rotation or merging to the father recursively, like
regular 2-3 trees.

If the process terminates at the root, and the root
contains only a single key that must be demoted, then the
root itself is deleted and the process halts.

Btrees - 16

Example of deletion from B(4)-tree

50 100

10 30 60 70 80 110 120

102 104 112 115 125 130

A

B C
D

E F G H I J K
L

M N

Delete 102 from L

50 100

10 30 60 70 80 120

104 112 115 125 130

A

B C D

E F G H I J K
L

N

D underflows

Btrees - 17

50 80

10 30 60 70 100, 120

104 112 115 125 130

A

B C D

E F G H I J K L

N

50 100

10 30 60 70 80 120

104 112 115 125 130

A

B C D

E F G H I J K
L

N

Btrees - 18

Summary of B-trees

B-trees are balanced

Storage utilization is at least 50% and is usually
higher (i.e., nodes are more nearly full than half
empty)

For a B-tree of height d, searching, insertion and
deletion can be done in O(d) time

Number of disk writes and reads is at most 3d + 4
for each operation

